skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ash, Subhaprad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 25, 2025
  2. Reported herein is a continuous one-step melt extrusion approach for highdensity polyethylene (HDPE) vitrimers. A grafting agent and a coagent were used to produce high-performing vitrimers. Maleic anhydride (MA) served as a reactive agent to facilitate crosslinking, while dimethyl maleate (DM) acted as a grafting enhancer by reducing the surface energy of HDPE grafted with MA. For comparison, MA alone was also tested as a grafting agent. The vitrimers obtained displayed superior mechanical properties compared with HDPE. The storage modulus, as well as crystallinity, were determined for the HDPE vitrimers. These vitrimers are reprocessable, thus supporting recycling efforts despite their crosslinked nature, owing to very fast relaxation due to low activation energy for the transesterification reaction. Consequently, these vitrimers are not only recyclable but also exhibit enhanced thermal and mechanical properties compared with conventional HDPE. 
    more » « less
  3. Abstract Reported herein is a continuous one‐step melt extrusion approach for high‐density polyethylene (HDPE) vitrimers. A grafting agent and a coagent were used to produce high‐performing vitrimers. Maleic anhydride (MA) served as a reactive agent to facilitate crosslinking, while dimethyl maleate (DM) acted as a grafting enhancer by reducing the surface energy of HDPE grafted with MA. For comparison, MA alone was also tested as a grafting agent. The vitrimers obtained displayed superior mechanical properties compared with HDPE. The storage modulus, as well as crystallinity, were determined for the HDPE vitrimers. These vitrimers are reprocessable, thus supporting recycling efforts despite their crosslinked nature, owing to very fast relaxation due to low activation energy for the transesterification reaction. Consequently, these vitrimers are not only recyclable but also exhibit enhanced thermal and mechanical properties compared with conventional HDPE. 
    more » « less